TRIANGLE OF FORCES RULE If an object is in equilibrium under the action of three coplanar forces, and these forces are represented in magnitude and direction by vectors drawn to scale and drawn in order, they will form a closed triangle.
The particle O has forces A, B and
A and B can be replaced by a single force S which is equal and opposite to force C.
This means that the three forces A, B and C are balanced (i.e. object O is in equilibrium under the action of forces A, B and C).
The three forces can then be represented in magnitude and direction by vectors A, B and C drawn to scale, with the head of each arrow joining with the tail
NOTE This rule can be applied to any vector quantities (e.g. velocity)

UNIT 6481	G481 Module 2 1.2.3 Equilibrium • PRINCIPLE OF MOMENTS			• PRINCIPLE OF MOMENTS 4			
• <i>MOMEI</i>	NT OF A FORCE			• This principle can be used to :			
 The ter meaning a body a The <u>MC</u> 	oms <u>turning effect</u> , <u>momen</u> a and they are a measure o about a given point. DMENT of a force about a	n <u>t</u> and <u>tor</u> f the abi point is a	r que all have the same lity of a force to rotate calculated from :	 Decide whether an object under the action of several forces will be in equilibrium or start to rotate. Calculate an unknown force or distance for an object in equilibrium under the action of several forces. 			
MOME / /////////////////////////////////		CULAR DIS	TANCE FROM THE LINE FORCE TO THE POINT	• The <u>PRINCIPLE OF MOMENTS</u> states that if an object is in equilibrium (i.e. balanced) under the action of several coplanar forces, the sum of the clockwise moments about any point is equal to the sum of the anticlockwise moments about that point.			
/ pivc		Moment	· = x	PRACTICE QUESTIONS (2)			
1		Moment	= x = x =	1 Use the principle of moments to calculate the size of the force F needed in order to keep the rod shown in the diagram in equilibrium.			
				©2008 FXA			

Assuming that the forearm is at right angles to the upper arm, calculate the size of the *force (F)* which the biceps muscle needs to provide.

3 A lorry of weight 40 000 N is stopped on a small, uniform beam bridge at a point which is 8 m from a supporting pillar X.

> If the bridge weighs **300 000 N**, calculate the upward reaction forces F_x and F_y on each of the pillars.

- (a) Explain the term *centre of gravity* of an object.
- (b) The diagram below shows a lawn mower which is being carried by two people.

- (i) The two people apply *forces A* and *B* at each end of the lawn mower. The weight of the lawn mower is *350 N.*
 - 1. Explain why the weight of the lawn mower does not act in the middle of the lawn mower, that is **55** cm from each end.
 - 2. Use the principle of moments to show that the *force B* is *64 N*.
 - 3. Determine the *force A*.
- (ii) State and explain what happens to the forces A and B if the person that applies Force B moves his hands along the handle towards the middle of the mower.
 - (OCR AS Physics Module 2821 June 2007)

© 2008 FXA

UNIT G 481	Module 2	1.2.3	Equilibrium	
• CONDITIONS FOR EQUILIBRIUM				• THE RESULTANT OR NET TORQUE ACTING ON THE OBJECT MUST BE ZERO AND SO THE
• A body motion	which is in <u>equilibrium</u> is r and it is therefore either	not suffer :	ing any changes in its	ANGULAR ACCELERATION IS ZERO. (This condition is commonly called the PRINCIPLE OF MOMENTS)
•	STATIONARY or			
•	MOVING WITH CO (i.e. <u>not accelerating</u>	NSTANT)	VELOCITY	wind wind hinge
• For an a followin	bject to be in equilibrium g conditions must be satis	under the sfied :	e action of forces, the	
• 7 // // // // // // // // //	THE RESULTANT OR NE NUST BE ZERO AND SO VILL BE ZERO.	THE LIN	ON AN OBJECT NEAR ACCELERATION	A rectangular pub sign hinged along its upper edge is held in equilibrium at an angle (θ) to the vertical by the wind. Assuming that the friction at the hinge is negligible, equilibrium is possible so long as the RESULTANT TORQUE = 0. Therefore : Clockwise torque due = Anticlockwise torque due to the sign's weight to the wind force $W \times X = F_w \times Y$
<i>cc</i>	mponents.		WEIGHT	• DENSITY (ρ)
Ti if Ze ha	he object is in equilibrium the resultant force is ero vertically and prizontally.	The plane constant v D So horizon L So verticc	is in equilibrium when it is flying at velocity at a fixed altitude. DRAG = THRUST ntal resultant force = 0 IFT = WEIGHT nl resultant force = 0	 The DENSITY (ρ) of a substance is the mass per unit volume of the substance. i.e. density (ρ) = mass (m) / (kg) kg m⁻³

UNIT 6481	Module 2	1.2.3	Equilibrium	•	HOMEWORK QUESTIONS			
• The den • • Despite very eft known e compare	sity of an element depend The mass of each of The way the atoms a its lowly 76th place in the ficiently packed together of lement (ρ = 2.25 x 10⁴ k ed to the density of nuclei	ds on : its atom re packe and this n g m ⁻³). at around	s, and d together. Table OSMIUM's atoms makes it the densest This density is nothing d 4.0 × 10 ¹⁷ kg m ⁻³ !	1	 (a) What is a COUPLE ? (b) What does a couple tend to produce and what can it not produce ? (c) Define the TORQUE of a couple. (d) Calculate the TORQUE produced by the forces shown in the diagram opposite 	1200 N	rotating disc	
PRESSU PRESSU PRESSU PRESSU PRESSU (N m ⁻¹ The unit pascal ($RE (p)$ $RE = NORMAL FORCE cROSS-SECTIONAL ARD D = F (N) A (m^{2}) D = f (N) A (m^{2}) D = I Pa = I Pa = I Pa$	er unit ar	ea acting on a surface.	2	 (a) (i) Define PRESSURE. (ii) Define MOMENT of a force. (b) The diagram shows a device used for compressing materials. A vertical force of 20 N is applied at one end of a lever system. The lever is pivoted about a material in the cylinder. (i) Two forces acting on the lev State two other forces act direction in which they act. (ii) By taking moments about H, plunger is 83 N. The weight (c) The cross-sectional area of Calculate the pressure exec in the cylinder. (OCR AS Physics - Module 22 	sics (part question) - Module 380 mm F = 20 N we are are are are are are are are are ar	2821 - June 2006) 120 mm 120 mm plunger crushed material cylinder ompresses the d the force F. luding the ting on the be neglected. $7^3 m^2$. he material @ 2008 FXA	

- (i) Show that the force acting on the plank at the support B is approximately 540 N by taking moments of all the forces about the support at A.
- (ii) Calculate the *force* acting on the plank at support *A*.
- (iii) Describe and explain what happens to the forces on the plank at A and B if the painter moves towards the support at A.

(OCR AS Physics - Module 2821 - May 2008)

The diagram below shows a system for supporting a load.

The load of weight **4400** N is hanging from a uniform beam that is supported by a horizontal cable. The beam has a weight of **850** N and is hinged at A.

- (a) Take moments about *A* and show that the *tension T* in the cable is *6400 N* (to 2 significant figures).
- (b) *State and explain* what force, in addition to those shown, must act on the beam to keep it in equilibrium. You are not expected to calculate this force.

Draw this force on the diagram above and label it *F*.

(OCR AS Physics - Module 2821 - May 2008)

© 2008 FXA