UNIT G481 \quad Module 2 1.2.3 \quad Equilibrium	- THREE FORCES IN EQUILIBRIUM 1
- Candidates should be able to : - Draw and use a triangle of forces to represent the equilibrium of three forces acting at a point in an object. - State that the CENTRE OF GRAVITY of an object is a point where the entire weight of an object appears to act. - Describe a simple experiment to determine the centre of gravity of an object. - Explain that a COUPLE is a pair of forces that tends to produce rotation only. - Define and apply the TORQUE due to a couple. - Define and apply the MOMENT of a force. - Explain that both the NET FORCE and the NET MOMENT on an extended object in equilibrium is zero. - Apply the PRINCIPLE OF MOMENTS to solve problems, including the human forearm. - Select and use the equation for DENSITY $-\rho=m / V$ - Select and use the equation for PRESSURE - $p=F / A$ Where F is the force normal to the area A.	TRIANGLE OF FORCES RULE If an object is in equilibrium under the action of three coplanar forces, and these forces are represented in magnitude and direction by vectors drawn to scale and drawn in order, they will form a closed triangle. The particle O has forces A, B and C acting on it. A and B can be replaced by a single force S which is equal and opposite to force C. This means that the three forces A, B and C are balanced (i.e. object O is in equilibrium under the action of forces A, B and C). The three forces can then be represented in magnitude and direction by vectors A, B and C drawn to scale, with the head of each arrow joining with the tail of the next. NOTE - This rule can be applied to any vector quantities (e.g. velocity, Momentum etc..)

- \quad Suspend the lamina from a clamped pin through a hole (A) drilled near one edge as shown in the diagram above.
- Hang a plumb line from the pin and use a fine marker pen to mark the vertical position of the string onto the lamina.

Since the plumb line and the lamina must hang with their centres of gravity directly below the point of suspension, the position of the centre of gravity $\left(c_{g}\right)$ of the lamina must lie somewhere along the line marked by the pen.

- Hang the lamina from a second hole (B) and once again mark the plumb line's position onto the lamina.

The lamina's centre of gravity is at the point where this line intersects the previously marked line.

- The lamina can be hung from a third hole and the procedure repeated in order to check the position of the c_{g}. you should be able to balance the lamina from this point.

30 N is suspended by a rope attached to a fixed support. A constant wind blowing horizontally pushes the basket so that the rope makes an angle of 20° with the vertical as shown in the diagram opposite.

Determine the tension in the rope and the force due to the wind:
(a) Using the triangle of forces rule, and
(b) By resolution of the forces acting on the basket.

(a) Explain the term centre of gravity of an object.
 a weight of 45 N and it is held in the hand at a distance of 35 cm from the elbow.

Assuming that the forearm is at right angles to the upper arm, calculate the size of the force (F) which the biceps muscle needs to provide.

3 A lorry of weight on a small, uniform beam bridge at a point which is $\mathbf{8} \boldsymbol{m}$ from a supporting pillar X.

If the bridge weighs 300000 N, calculate the upward reaction forces F_{x} and F_{y} on each of the pillars.

40000 N is stopped

 300000 N , calcula(b) The diagram below shows a lawn mower which is being carried by two people.

(i) The two people apply forces A and B at each end of the lawn mower. The weight of the lawn mower is 350 N .

1. Explain why the weight of the lawn mower does not act in the middle of the lawn mower, that is 55 cm from each end.
2. Use the principle of moments to show that the force B is 64 N .
3. Determine the force A.
(ii) State and explain what happens to the forces A and B if the person that applies Force B moves his hands along the handle towards the middle of the mower.

UNIT G481	Module 2	1.2 .3	Equilibrium	- HOMEWORK QUESTIONS

- The density of an element depends on :
- The mass of each of its atoms, and
- The way the atoms are packed together.

Despite its lowly 76th place in the Periodic Table OSMIUM's atoms very efficiently packed together and this makes it the densest known element ($\rho=2.25 \times 10^{4} \mathrm{~kg} \mathrm{~m}^{-3}$). This density is nothing compared to the density of nuclei at around $4.0 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$!

PRESSURE (p)

PRESSURE is the 'normal' force per unit area acting on a surface.

- \quad The unit of pressure is the Newton per metre ${ }^{2}$ which is called the pascal (Pa).

$$
1 \mathrm{~Pa}=1 \mathrm{Nm}^{-2}
$$

(a) What is a COUPLE?
(b) What does a couple tend to produce and what can it not produce?
(c) Define the TORQUE of a couple.
(d) Calculate the TORQUE
 produced by the forces shown in the diagram opposite.
(OCR AS Physics (part question) - Module 2821 - June 2006)
2 (a) (i) Define PRESSURE.
(ii) Define MOMENT of a force.
(b) The diagram shows a device used for compressing materials. A vertical force of 20 N is applied at one
 end of a lever system.
The lever is pivoted about a hinge H. The plunger compresses the material in the cylinder.
(i) Two forces acting on the lever arm are its weight and the force F. State two other forces acting on the lever arm, including the direction in which they act.
(ii) By taking moments about H, show that the force acting on the plunger is 83 N . The weight of the lever arm may be neglected.
(c) The cross-sectional area of the plunger is $4.0 \times 10^{-3} \mathrm{~m}^{2}$. Calculate the pressure exerted by the plunger on the material in the cylinder.
(OCR AS Physics - Module 2821 - January 2006)

UNIT G481	Module 2	1.2 .3	Equilibrium

3 A rectangular tombstone has dimensions $1.50 m \times 0.75 m \times 0.10 m$ and it is made from a stone of density $4500 \mathrm{~kg} \mathrm{~m}^{-3}$. Calculate :
(a) The weight of the tombstone.
(b) The minimum force needed to lift one end of the tombstone if it is lying flat on its largest face.

4 (a) State the two conditions necessary for a system to be in equilibrium.

(b) The diagram above shows a painter's plank resting on two supports A and B. The plank is uniform, has a weight of 80 N and a length of 2.00 m . A painter of weight 650 N stands 0.55 m from one end.
(i) Show that the force acting on the plank at the support B is approximately 540 N by taking moments of all the forces about the support at \boldsymbol{A}.
(ii) Calculate the force acting on the plank at support \boldsymbol{A}.
(iii) Describe and explain what happens to the forces on the plank at \boldsymbol{A} and \boldsymbol{B} if the painter moves towards the support at \boldsymbol{A}.
(OCR AS Physics - Module 2821 - May 2008)

5 The diagram below shows a system for supporting a load.

The load of weight $4400 \mathbf{N}$ is hanging from a uniform beam that is supported by a horizontal cable. The beam has a weight of 850 N and is hinged at \boldsymbol{A}.
(a) Take moments about \boldsymbol{A} and show that the tension \boldsymbol{T} in the cable is 6400 N (to 2 significant figures).
(b) State and explain what force, in addition to those shown, must act on the beam to keep it in equilibrium. You are not expected to calculate this force.

Draw this force on the diagram above and label it F.
(OCR AS Physics - Module 2821 - May 2008)

